次の確率を求める問を解いてください。正解者にはポイント差し上げます。解答だけではなく途中の式も書いてください。

(1)
EとFをP(E)=3/8 , P(F)=5/8およびP(EUF)=3/4である事象とする。P(E|F)および
P(F|E)を求めよ。

(2)
P(E)=3/8, P(F)=1/2およびP(EnF)=1/4である。この時の次の確立を求めよ。ここでのcは余事象を表す。
P(E U F)=5/8, P(Ec)=5/8,P(Fc)=1/2である
(a)P(Ec n Fc)
(b)P(Ec U Fc)
(c)P(E n Fc)
(d)P(Ec n F )

回答の条件
  • URL必須
  • 1人2回まで
  • 登録:2005/06/14 01:36:49
  • 終了:--

回答(2件)

id:reply No.1

reply回答回数787ベストアンサー獲得回数02005/06/14 09:05:40

Pr{A ∪ B} = Pr{A} + Pr{B} - Pr{A ∩ B}

より

3/4=3/8+5/8-P{E ∩ F}

P{E ∩ F}=8/8-6/8=2/8


Pr{A ∩ B} = Pr{A} ・ Pr{B | A}

より、

P(F|E)=P{E ∩ F}/P(F)

=(2/8)/(5/8)

=2/5


P(E|F)=P{E ∩ F}/P(E)

=(2/8)/(3/8)

=2/3

id:smoking186 No.2

186回答回数74ベストアンサー獲得回数62005/06/14 09:08:44

ポイント50pt

n = ∩, U = ∪として計算しています。


1.

P(E∪F) = P(E)+P(F)-P(E∩F)より,

P(E∩F) = P(E)+P(F)-P(E∪F) = 3/8 + 5/8 - 3/4 = 1/4.


P(E|F) = P(E∩F)/P(F) = (1/4) / (5/8) = 2/5.

P(F|E) = P(E∩F)/P(E) = (1/4) / (3/8) = 2/3.


2.

ド・モルガンの法則よりEc∩Fc = (E∪F)c, Ec∪Fc = (E∩F)c.

また, E∩Fc = E∩(U ¥setminus F) = E ¥setminus E∩F (ただしUは全事象, EとFを入れ替えても同様).


(a) P(Ec∩Fc) = P((E∪F)c) = 1 - 5/8 = 3/8.

(b) P(Ec∪Fc) = P((E∩F)c) = 1 - 1/4 = 3/4.

(c) P(E∩Fc) = P(E) - P(E∩F) = 3/8 - 1/4 = 1/8.

(d) P(Ec∩F) = P(F) - P(E∩F) = 1/2 - 1/4 = 1/4.

id:kurosawa666

全問正解です

おめでとう

2005/06/14 13:40:06

コメントはまだありません

この質問への反応(ブックマークコメント)

トラックバック

「あの人に答えてほしい」「この質問はあの人が答えられそう」というときに、回答リクエストを送ってみてましょう。

これ以上回答リクエストを送信することはできません。制限について

絞り込み :
はてなココの「ともだち」を表示します。
回答リクエストを送信したユーザーはいません