a(n) = 1

a(n+1) = (5 + a(n))/2
以上の条件式で与えられる数列a(n)に、極限値(n→∞)が存在する(拡散しない)ことを証明する方法を教えてください。数学的帰納法を使わない別の方法を探しています。

回答の条件
  • 1人2回まで
  • 登録:2006/05/05 15:22:00
  • 終了:2006/05/12 15:25:03

回答(4件)

id:n_koji72 No.1

n_koji72回答回数53ベストアンサー獲得回数12006/05/05 17:21:49

ポイント23pt

与式を

a(n+1)-5=(a(n)-5)/2

と変形すると,数列[a(n)-5}は

初項1-5=-4,公比1/2の等比数列

a(n)-5=-4(1/2)^(n-1)

a(n)=5-4(1/2)^(n-1)

n→∞のときa(n)→5

高校の教科書での標準的な解法だと思います。

#数学的帰納法使って証明できるのかな...

id:sorakihu

高校で習ったことをすべて忘れてしまっていたようです…。この解法でよさそうです。ありがとうございました。

2006/05/06 07:41:19
id:Z9M9Z No.2

Z9M9Z回答回数343ベストアンサー獲得回数112006/05/05 17:27:51

ポイント23pt

a(0)=1 の間違いと解釈しまして‥

2a(n+1)-a(n)=5 ですから、両辺を2倍・4倍してあげますと

8a(n+3)-4a(n+2)=20

4a(n+2)-2a(n+1)=10

2a(n+1)-a(n)=5

適当に足すと、

8a(n+3)-a(n)=5+10+20

4a(n+2)-a(n)=5+10

2a(n+1)-a(n)=5

てな具合になるのが分かると思います。まわりくどい?ようするに

(2^n)a(n)-a(0)=5*(2^n-1) となるわけで、両辺割り算などで

a(n)=2^(-n)+5*(1-2^(-n)) になりまして、

2^(-n)はn→∞で0ですから、a(n)は5にだんだん近づくはずです。

‥計算あってるかな‥。

id:matsudoku No.3

松徳礼治回答回数10ベストアンサー獲得回数02006/05/05 17:41:42

ポイント22pt

なんか5-a(n)が半分ずつになっていくようなので、

b(n)=5-a(n)とすると、

b(1)=4

b(n+1)=5-a(n+1)

    =5-(5+a(n))/2

    =(5-a(n))/2

    =b(n)/2

公比1/2の数列が0に収束することの証明は自分で調べてください。

あとは、b(n)が0に収束するので、a(n)は5に収束します。

id:ys12 No.4

ys12回答回数6ベストアンサー獲得回数02006/05/05 20:07:06

ポイント22pt

a_{n+1}=(a_{n}+5)/2

a_{n+1}-5=(a_{n}-5)/2となり

b_{n}=a_{n}-5なる数列b_{n}を考えると

a_{1}=1より数列b_{n}は初項-4公比\frac{1}{2}の等比数列となる。

よってb_{n}=-4(\frac{1}{2})^{n-1}

a_{n}=5-(\frac{1}{2})^{n-3}

\lim_{n\rightarrow\infty}a_{n}=5となり収束する。

これでいいんで無いでしょうか。

収束如何を帰納法で証明するというのがよくわかりませんが

id:sorakihu

みなさん同じ解法ですね。ありがとうございました。

帰納法では、a[n]が常に増加していること

1<a[n]<5より、Monotonic Sequence Theoremを使います。</p>

2006/05/06 07:43:18

コメントはまだありません

この質問への反応(ブックマークコメント)

「あの人に答えてほしい」「この質問はあの人が答えられそう」というときに、回答リクエストを送ってみてましょう。

これ以上回答リクエストを送信することはできません。制限について

絞り込み :
はてなココの「ともだち」を表示します。
回答リクエストを送信したユーザーはいません