3点(-3、-2)、(0,4)、(1,2)を通る円の方程式を求めよ。という問題なのですが、よくわかりません…解説をお願いします!!

回答の条件
  • 1人5回まで
  • 13歳以上
  • 登録:2013/01/06 18:13:44
  • 終了:2013/01/08 21:20:39

ベストアンサー

id:matryosika No.1

matryosika回答回数36ベストアンサー獲得回数142013/01/06 21:56:01

すべての円の方程式は
(x-a)^2+(y-b)^2=r^2
の形であらわすことができます。(半径r、中心(a,b)の円の方程式)

円が指定された点上を通るということなので、それぞれ3つの点のx,yをこの式に代入して、
(-3-a)^2+(-2-b)^2=r^2
a^2+(4-b)^2=r^2
(1-a)^2+(2-b)^2=r^2
を得ることができます。

この式を展開してそれぞれの式について
a^2+b^2-r^2=ほにゃらら
の形にまとめて、3つの式をイコールで結べば、a,bに関する連立方程式が導けます。(3つの式のほにゃららの部分をP,Q,Rとすると、P=Q=Rとなり、P=Q,P=Rの二つの式はa,bについての連立方程式として十分になります)
a,bがわかったら、先ほどの3つの式のうちどれかに代入してrを導くことができます。

a,b,rが導けたら円の方程式が決定できたことになります。

id:mousugu8gatu

詳しい回答ありがとうございます!おかげでテスト勉強がはかどりました^^

2013/01/08 21:20:22

その他の回答(1件)

id:matryosika No.1

matryosika回答回数36ベストアンサー獲得回数142013/01/06 21:56:01ここでベストアンサー

すべての円の方程式は
(x-a)^2+(y-b)^2=r^2
の形であらわすことができます。(半径r、中心(a,b)の円の方程式)

円が指定された点上を通るということなので、それぞれ3つの点のx,yをこの式に代入して、
(-3-a)^2+(-2-b)^2=r^2
a^2+(4-b)^2=r^2
(1-a)^2+(2-b)^2=r^2
を得ることができます。

この式を展開してそれぞれの式について
a^2+b^2-r^2=ほにゃらら
の形にまとめて、3つの式をイコールで結べば、a,bに関する連立方程式が導けます。(3つの式のほにゃららの部分をP,Q,Rとすると、P=Q=Rとなり、P=Q,P=Rの二つの式はa,bについての連立方程式として十分になります)
a,bがわかったら、先ほどの3つの式のうちどれかに代入してrを導くことができます。

a,b,rが導けたら円の方程式が決定できたことになります。

id:mousugu8gatu

詳しい回答ありがとうございます!おかげでテスト勉強がはかどりました^^

2013/01/08 21:20:22
id:rsc96074 No.2

rsc回答回数4391ベストアンサー獲得回数4022013/01/06 23:47:09

 円の方程式を次式のように置くと、
f(x,y)=x^2+y^2+ax+by+c=0
 3点を上式に代入して、
f(-3,-2)=0…①
f( 0, 4)=0…②
f( 1, 2)=0…③
 a,b,cについての連立方程式①②③を解いて、
後は、(x-p)^2+(y-q)^2=r^2の形に変形しておけばよいでしょう。

コメントはまだありません

この質問への反応(ブックマークコメント)

「あの人に答えてほしい」「この質問はあの人が答えられそう」というときに、回答リクエストを送ってみてましょう。

これ以上回答リクエストを送信することはできません。制限について

絞り込み :
はてなココの「ともだち」を表示します。
回答リクエストを送信したユーザーはいません