人力検索はてな
モバイル版を表示しています。PC版はこちら
i-mobile

4つの六角形の組み合わせ総数と、その計算方法を教えてください。
正六角形が4つあります。組み合わせ方のルールは以下です。
1)必ず辺同士が接する組み合わせ
2)頂点のみ接している組み合わせは不可とします。
3)4つの六角形は個別に判別できる特徴はないものとします。

URLは必須ではありません。
あきらかに勘違いの回答や、誠実さの欠けた回答にはポイントを
控えさせていただきます。

質問内容にたいする質問などはわたしのはてなダイアリのコメントに
書き込んで下さればご返答いたします。(1/19のダイアリです)
それで、回答してくださる前に一度ダイアリにも目を通していただけると
たすかります。ダイアリに組み合わせ例なども載せています。
http://d.hatena.ne.jp/deepskyblue/20050119

ちなみに、回答の正誤を確認する意味で、3つの正六角形の
組み合わせ総数も答えてください。条件は上記と同一とします。

●質問者: deepskyblue
●カテゴリ:学習・教育 ゲーム
✍キーワード:URL いただきます いもの はてなダイアリ コメント
○ 状態 :終了
└ 回答数 : 6/6件

▽最新の回答へ

1 ● wintertree
●25ポイント

http://www.hatena.ne.jp/1106120314#

人力検索はてな - 4つの六角形の組み合わせ総数と、その計算方法を教えてください。 正六角形が4つあります。組み合わせ方のルールは以下です。 1)必ず辺同士が接する組み合わせ 2)頂点の..

まず、それぞれの形の組み合わせを考えて、次にそれをおく向きを考えます。

それぞれ次のように名前を付けることにします。

(下の図は都合により六角形が横向きになっています)

I形: ○○○○

L形: ○○○

N形: ○○

○○

P形: ○

○○○

O形: ○○

○○

上の分かりにくい図で分かったでしょうか。回転したり裏返したりしたものも一つとして数えると、上の5通りしかないと思います。

次に、それぞれのパターンの置き方の数を数えます。

I形:回転させると6通りだが、2つずつ同じものがあるので3通り。

L形:上の図のまま回転させると6通り、裏返したものもあるので全部で12通り。

N形:上の図のまま回転させると6通りだが、2つずつ同じものがあるので3通り。裏返したものもあるので全部で6通り。

P形:L形と同様に12通り。

O型:N形と同様に6通り。

となるので、合計すると3+12+6+12+6=39通り

3つの六角形の場合は、

I形:○○○

L形:○○

O形:○○

数え上げると、

I形:上と同様に3通り。

L形:裏返しても元の形を120度まわしたものと同じになるので、上の図のまま回転させると6通り。

O形:回転させると6通りだが、3つずつ同じものがあるので2通り。

となるので、合計すると3+6+2=11通り

頭の悪い方法でやったので、重複があったり、数え上げてないものがあったりするかもしれません。これで答えは合っているのでしょうか。

◎質問者からの返答

お〜論理的♪ご丁寧にありがとうございました。

考え方の主旨は大変参考になります。

さて、答えがあっているかあっていないかの点ですが、

答えは自分でも出ていないんです・・・

総当りで列挙していっている最中です。で、その総数が正しいという

確証が欲しくて質問しました。

しかし、上記でI,L,N,P,O形 としてくださいましたが、その名づけ

ルールにのっとって言うならC形Y形というのも出てきます。

なので、答えとしては間違いではないかと思います。

この件でご指摘などありましたら、ダイアリのコメントへお願いします。


2 ● lainnote
●5ポイント

http://d.hatena.ne.jp/deepskyblue

[[ ist ]] mac,windows,ipod パソコン周辺機器 etc...

おそらく意図される答えとは異なると思いますが参考までに。

まず、2つの正六角形の辺と辺をぴったりと合わせます。次に、その片方をあわせた辺と平行な方向に「ほんのすこし」ずらします。

仮に1辺を1メートルと定義したときにずらせる長さは0<X<1の範囲で無限通りです。

よって組み合わせは無限。

3つの場合も同様です。

もしこの結果がお望みのものと違うならば、

2の項目を削除するほうが良いでしょう。

◎質問者からの返答

はい。どうもです。では“1”の項目を修正いたします。

「必ず辺同士かつ頂点同士が接する組み合わせ」とします。

今後このような内容はダイアリの方へお願いします。

ダイアリへ「間違った組み合わせの例 その2」を追加しました。


3 ● 186
●25ポイント

http://d.hatena.ne.jp/smoking186/20050119

日記で書いてみたので解答します。

3つの場合と4つの場合で別の答え方をします。ご了承下さい。3つ場合、力技の方が早かったので。

http://www.hatena.ne.jp/1106120314/3

3つの場合

1

3

2 6

5

4

とグラフ化します。数字のところに六角形の中心が来るとお考え下さい。どのような角度であれ、3つの六角形を組み合わせたものはこれに入ります。

まず、全ての数の組み合わせはC_{6,3}で20通りあります。

接していないパターンは(1,2,6),(1,3,4),(1,4,5),(1,4,6),(1,5,6),(2,4,6),(3,4,6)の7通りです。

同じ形になるパターンは(1,2,3)=(2,4,5)=(3,5,6)だけです。

よって、20-7-2=11通りになります。

http://www.hatena.ne.jp/1106120314/4

次に4つの六角形の場合です。

これも3つの場合と同様に番号を付けます

1

3

2 6

5 10

4 9

8

7

辺が接している場合、中心同士の間に線を引くと考えます。するとパターンは

1. 正三角形×2 (例:(1,2,3,5)) が3通り

2. 正三角形+1本の線 (例:(1,2,3,4))が 6通り

3. 長い線+短い線 (例:(1,2,4,8))が12通り

4. 長い線のみ (例:(1,2,4,7))が3通り

全部足して, 3+6+12+3=24通りとなります。

◎質問者からの返答

回答ありがとうございます。

これもまた参考になりました。

しかし、総当りでだしてみたところ、44組は違うパターンが

作れそうです。

例えば、2,3,4,8 という組み合わせや、2,5,6,8

という組み合わせがあります。


4 ● lilybells
●20ポイント

http://d.hatena.ne.jp/

はてなダイアリー - 無料で簡単。広告のないシンプルなブログをはじめよう!

だみーURL

六角形3つで三角形の形ができるものがいくつかによってわけて数えてみます。

三角形2つの場合(wintertreeさんでいうO形)

OO

OO

余る六角形は0。

回転させると6。2つずつ同じものがあるので計6/2=3通り。

三角形1つの場合

AB

O

COOF

D E

余る六角形は1。余りをつける場所A〜Fで6、回転させる6で、

3つずつ同じものがあるので計6×6/3=12通り。

三角形0の場合

A F

BOOE

C D

余る六角形は2。

余りをつける場所の組み合わせ6C2-4=11通り。(引く4通りはAB、BC、DE、EF)

回転させる6通りで、2つずつ同じものがあるので計11×6/2=33通り。

合計3+12+33=48となります。

六角系3つの場合。

O

OO

余る六角形は0。回転させると6通りで、

3つずつ同じものがあるので計6/3=2通り。

A F

BOOE

C D

余る六角形は1。

余りをつける場所ACDFは6×4/4=6通り

BEは6×2/2/2=3通り。

合計2+3+9=11通りとなります。

◎質問者からの返答

回答ありがとうございます。

「三角形0の場合」の説明がいまいち理解できませんでした。すみません(^^;

その説明のなかで、「回転させる6通りで、2つずつ同じものがあるので

計11×6/2=33通り」とありますが、例えばI形などは回転によって

重複する組み合わせは3通りあります。なのでこの数式がただいいとは

いえないかと思います。間違っていましたらすみません。

lilybells様に限らず補足説明や訂正などありましたら、ダイアリの

コメントか、再回答でも結構ですので、お願い致します。


5 ● lilybells
●5ポイント

http://d.hatena.ne.jp/deepskyblue/

[[ ist ]] mac,windows,ipod パソコン周辺機器 etc...

ダミー

Y形の重複抜け分があったので訂正します。

六角形3つで三角形の形ができるものがいくつかによってわけて数えてみます。

三角形2つの場合(wintertreeさんでいうO形)

OO

OO

余る六角形は0。

回転させると6。2つずつ同じものがあるので計6/2=3通り。

三角形1つの場合

AB

O

COOF

D E

余る六角形は1。余りをつける場所A〜Fで6通り、回転させる6通りで、

3つずつ同じものがあるので計6×6/3=12通り。

三角形0の場合

A F

BOOE

C D

余る六角形は2。

余りをつける場所の組み合わせ6C2-4-2=9通り。

(引く4通りはAB、BC、DE、EF)(引く2通りはACとDF)

回転させる6通りで、2つずつ同じものがあるので計9×6/2=27通り。

ACとDFについては6つずつ同じものがあるので6×2/6=2

合計3+12+29=44となります。

六角系3つの場合。

O

OO

余る六角形は0。

回転させると6通りで、3つずつ同じものがあるので計6/3=2通り。

A F

BOOE

C D

余る六角形は1。

余りをつける場所ACDFは4つずつ同じものができるので6×4/4=6通り

BEは4つずつ同じものができるので6×2/4=3通り。

合計2+9=11通りとなります。

◎質問者からの返答

ありがとうございます。44通りで確定のようですね。


1-5件表示/6件
4.前の5件|次5件6.
関連質問


●質問をもっと探す●



0.人力検索はてなトップ
8.このページを友達に紹介
9.このページの先頭へ
対応機種一覧
お問い合わせ
ヘルプ/お知らせ
ログイン
無料ユーザー登録
はてなトップ