人力検索はてな
モバイル版を表示しています。PC版はこちら
i-mobile

C言語の勉強をしています。SORT.Cのソースコードが欲しいです。それも最速のロジックで作成された一品を参照できる場所を教えてください。仕様はWINDOWSのSORTコマンドと同じものでお願いします。

●質問者: goldman
●カテゴリ:コンピュータ 科学・統計資料
✍キーワード:Windows コマンド ソースコード ロジック 一品
○ 状態 :終了
└ 回答数 : 2/2件

▽最新の回答へ

1 ● t111
●20ポイント

http://oku.edu.mie-u.ac.jp/~okumura/algo/

『C言語による最新アルゴリズム事典』

書籍「C言語による最新アルゴリズム事典」奥村晴彦著,技術評論社のサポートページを紹介いたします。

ここから、本に載っている全てのソースコードをダウンロードできます。

もちろん、各種ソートのアルゴリズムも含まれます。

動作はWindowsのsortコマンドと同じではありませんが、「C言語の勉強」という点ではご期待に添えると思います。


2 ● shampoohat
●30ポイント

http://www.atmarkit.co.jp/flinux/rensai/lfs03/lfs03b.html

@IT:OSの心臓、glibcのコンパイルとchroot(2/3)

http://ja.wikipedia.org/wiki/%E3%82%BD%E3%83%BC%E3%83%88

ソート - Wikipedia

glibcのを参照するのがいいでしょう。

Linuxで標準的に利用されているコードなので「本物」です。


「最速のロジック」についてですが、ソートアルゴリズムについては、一概に最速といえるものは存在しないです(wikipedia参照)。


このためか、glibcでも、quick sortとmerge sortが入っているように見えます。


どちらも、入力レコード数nに対してn log(n)の時間計算量を所要するソートですので、最速のロジックといえば最速ですが。


以下は、wikipediaのURLとglibcのソースからのコピペです(それぞれ、qsort.cとmsort,c、msortのほうは多分マージソートだと思うもののあんまりきちんとソースを読んでないです)。ソースを入手する方法などは最初のURLを参照。

http://ja.wikipedia.org/wiki/%E3%82%AF%E3%82%A4%E3%83%83%E3%82%A...

クイックソート - Wikipedia

#include <limits.h>

#include <stdlib.h>

#include <string.h>

/* Byte-wise swap two items of size SIZE. */

#define SWAP(a, b, size) ¥

do ¥

{ ¥

register size_t __size = (size); ¥

register char *__a = (a), *__b = (b); ¥

do ¥

{ ¥

char __tmp = *__a; ¥

*__a++ = *__b; ¥

*__b++ = __tmp; ¥

} while (--__size > 0); ¥

} while (0)

/* Discontinue quicksort algorithm when partition gets below this size.

This particular magic number was chosen to work best on a Sun 4/260. */

#define MAX_THRESH 4

/* Stack node declarations used to store unfulfilled partition obligations. */

typedef struct

{

char *lo;

char *hi;

} stack_node;

/* The next 4 #defines implement a very fast in-line stack abstraction. */

/* The stack needs log (total_elements) entries (we could even subtract

log(MAX_THRESH)). Since total_elements has type size_t, we get as

upper bound for log (total_elements):

bits per byte (CHAR_BIT) * sizeof(size_t). */

#define STACK_SIZE (CHAR_BIT * sizeof(size_t))

#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))

#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))

#define STACK_NOT_EMPTY (stack < top)

/* Order size using quicksort. This implementation incorporates

four optimizations discussed in Sedgewick:

1. Non-recursive, using an explicit stack of pointer that store the

next array partition to sort. To save time, this maximum amount

of space required to store an array of SIZE_MAX is allocated on the

stack. Assuming a 32-bit (64 bit) integer for size_t, this needs

only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).

Pretty cheap, actually.

2. Chose the pivot element using a median-of-three decision tree.

This reduces the probability of selecting a bad pivot value and

eliminates certain extraneous comparisons.


3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving

insertion sort to order the MAX_THRESH items within each partition.

This is a big win, since insertion sort is faster for small, mostly

sorted array segments.

4. The larger of the two sub-partitions is always pushed onto the

stack first, with the algorithm then concentrating on the

smaller partition. This *guarantees* no more than log (total_elems)

stack size is needed (actually O(1) in this case)! */

void

_quicksort (void *const pbase, size_t total_elems, size_t size,

__compar_fn_t cmp)

{

register char *base_ptr = (char *) pbase;

/* Allocating SIZE bytes for a pivot buffer facilitates a better

algorithm below since we can do comparisons directly on the pivot. */

char *pivot_buffer = (char *) __alloca (size);

const size_t max_thresh = MAX_THRESH * size;

if (total_elems == 0)

/* Avoid lossage with unsigned arithmetic below. */

return;

if (total_elems > MAX_THRESH)

{

char *lo = base_ptr;

char *hi = &lo[size * (total_elems - 1)];

stack_node stack[STACK_SIZE];

stack_node *top = stack + 1;

while (STACK_NOT_EMPTY)

{

char *left_ptr;

char *right_ptr;

char *pivot = pivot_buffer;

/* Select median value from among LO, MID, and HI. Rearrange

LO and HI so the three values are sorted. This lowers the

probability of picking a pathological pivot value and

skips a comparison for both the LEFT_PTR and RIGHT_PTR in

the while loops. */

char *mid = lo + size * ((hi - lo) / size >> 1);

if ((*cmp) ((void *) mid, (void *) lo) < 0)

SWAP (mid, lo, size);

if ((*cmp) ((void *) hi, (void *) mid) < 0)

SWAP (mid, hi, size);

else

goto jump_over;

if ((*cmp) ((void *) mid, (void *) lo) < 0)

SWAP (mid, lo, size);

jump_over:;

memcpy (pivot, mid, size);

pivot = pivot_buffer;

left_ptr = lo + size;

right_ptr = hi - size;

/* Here’s the famous ``collapse the walls’’ section of quicksort.

Gotta like those tight inner loops! They are the main reason

that this algorithm runs much faster than others. */

do

{

while ((*cmp) ((void *) left_ptr, (void *) pivot) < 0)

left_ptr += size;

while ((*cmp) ((void *) pivot, (void *) right_ptr) < 0)

right_ptr -= size;

if (left_ptr < right_ptr)

{

SWAP (left_ptr, right_ptr, size);

left_ptr += size;

right_ptr -= size;

}

else if (left_ptr == right_ptr)

{

left_ptr += size;

right_ptr -= size;

break;

}

}

while (left_ptr <= right_ptr);

/* Set up pointers for next iteration. First determine whether

left and right partitions are below the threshold size. If so,

ignore one or both. Otherwise, push the larger partition’s

bounds on the stack and continue sorting the smaller one. */


if ((size_t) (right_ptr - lo) <= max_thresh)

{

if ((size_t) (hi - left_ptr) <= max_thresh)

/* Ignore both small partitions. */

POP (lo, hi);

else

/* Ignore small left partition. */

lo = left_ptr;

}

else if ((size_t) (hi - left_ptr) <= max_thresh)

/* Ignore small right partition. */

hi = right_ptr;

else if ((right_ptr - lo) > (hi - left_ptr))

{

/* Push larger left partition indices. */

PUSH (lo, right_ptr);

lo = left_ptr;

}

else

{

/* Push larger right partition indices. */

PUSH (left_ptr, hi);

hi = right_ptr;

}

}

}


/* Once the BASE_PTR array is partially sorted by quicksort the rest

is completely sorted using insertion sort, since this is efficient

for partitions below MAX_THRESH size. BASE_PTR points to the beginning

of the array to sort, and END_PTR points at the very last element in

the array (*not* one beyond it!). */

#define min(x, y) ((x) < (y) ? (x) : (y))

{

char *const end_ptr = &base_ptr[size * (total_elems - 1)];

char *tmp_ptr = base_ptr;

char *thresh = min(end_ptr, base_ptr + max_thresh);

register char *run_ptr;

/* Find smallest element in first threshold and place it at the

array’s beginning. This is the smallest array element,

and the operation speeds up insertion sort’s inner loop. */

for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)

if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)

tmp_ptr = run_ptr;

if (tmp_ptr != base_ptr)

SWAP (tmp_ptr, base_ptr, size);

/* Insertion sort, running from left-hand-side up to right-hand-side. */

run_ptr = base_ptr + size;

while ((run_ptr += size) <= end_ptr)

{

tmp_ptr = run_ptr - size;

while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr) < 0)

tmp_ptr -= size;

tmp_ptr += size;

if (tmp_ptr != run_ptr)

{

char *trav;

trav = run_ptr + size;

while (--trav >= run_ptr)

{

char c = *trav;

char *hi, *lo;

for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)

*hi = *lo;

*hi = c;

}

}

}

}

}

http://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%BC%E3%82%B8%E3%82%B...

マージソート - Wikipedia

/* An alternative to qsort, with an identical interface.

This file is part of the GNU C Library.

Copyright (C) 1992, 1995-1997, 1999, 2000, 2001 Free Software Foundation, In¥c.

Written by Mike Haertel, September 1988.

The GNU C Library is free software; you can redistribute it and/or

modify it under the terms of the GNU Library General Public License as

published by the Free Software Foundation; either version 2 of the

License, or (at your option) any later version.

The GNU C Library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Library General Public License for more details.

You should have received a copy of the GNU Library General Public

License along with the GNU C Library; see the file COPYING.LIB. If not,

write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,

Boston, MA 02111-1307, USA. */

#include <alloca.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <memcopy.h>

#include <errno.h>

static void msort_with_tmp (void *b, size_t n, size_t s,

__compar_fn_t cmp, char *t);

static void

msort_with_tmp (void *b, size_t n, size_t s, __compar_fn_t cmp,

char *t)

{

char *tmp;

char *b1, *b2;

size_t n1, n2;

if (n <= 1)

return;

n1 = n / 2;

n2 = n - n1;

b1 = b;

b2 = (char *) b + (n1 * s);

msort_with_tmp (b1, n1, s, cmp, t);

msort_with_tmp (b2, n2, s, cmp, t);

tmp = t;


if (s == OPSIZ && (b1 - (char *) 0) % OPSIZ == 0)

/* We are operating on aligned words. Use direct word stores. */

while (n1 > 0 && n2 > 0)

{

if ((*cmp) (b1, b2) <= 0)

{

--n1;

*((op_t *) tmp)++ = *((op_t *) b1)++;

}

else

{

--n2;

*((op_t *) tmp)++ = *((op_t *) b2)++;

}

}

else

while (n1 > 0 && n2 > 0)

{

if ((*cmp) (b1, b2) <= 0)

{

tmp = (char *) __mempcpy (tmp, b1, s);

b1 += s;

--n1;

}

else

{

tmp = (char *) __mempcpy (tmp, b2, s);

b2 += s;

--n2;

}

}

if (n1 > 0)

memcpy (tmp, b1, n1 * s);

memcpy (b, t, (n - n2) * s);

}

void

qsort (void *b, size_t n, size_t s, __compar_fn_t cmp)

{

const size_t size = n * s;

if (size < 1024)

{

void *buf = __alloca (size);

/* The temporary array is small, so put it on the stack. */

msort_with_tmp (b, n, s, cmp, buf);

}

else

{

/* We should avoid allocating too much memory since this might

have to be backed up by swap space. */

static long int phys_pages;

static int pagesize;

if (phys_pages == 0)

{

phys_pages = __sysconf (_SC_PHYS_PAGES);

if (phys_pages == -1)

/* Error while determining the memory size. So let’s

assume there is enough memory. Otherwise the

implementer should provide a complete implementation of

the `sysconf’ function. */

phys_pages = (long int) (~0ul >> 1);

/* The following determines that we will never use more than

a quarter of the physical memory. */

phys_pages /= 4;

pagesize = __sysconf (_SC_PAGESIZE);

}

/* Just a comment here. We cannot compute

phys_pages * pagesize

and compare the needed amount of memory against this value.

The problem is that some systems might have more physical

memory then can be represented with a `size_t’ value (when

measured in bytes. */

/* If the memory requirements are too high don’t allocate memory. */

if (size / pagesize > phys_pages)

_quicksort (b, n, s, cmp);

else

{

/* It’s somewhat large, so malloc it. */

int save = errno;

char *tmp = malloc (size);

if (tmp == NULL)

{

/* Couldn’t get space, so use the slower algorithm

that doesn’t need a temporary array. */

__set_errno (save);

_quicksort (b, n, s, cmp);

}

else

{

__set_errno (save);

msort_with_tmp (b, n, s, cmp, tmp);

free (tmp);

}

}

}

}

◎質問者からの返答

難しい〜

関連質問


●質問をもっと探す●



0.人力検索はてなトップ
8.このページを友達に紹介
9.このページの先頭へ
対応機種一覧
お問い合わせ
ヘルプ/お知らせ
ログイン
無料ユーザー登録
はてなトップ