人力検索はてな
モバイル版を表示しています。PC版はこちら
i-mobile

正方形ABCDの内部に、正方形PQRSが接して回転するとき、
正方形ABCDに対する正方形PQRSの面積比はいくつになりますか?
ここで、∠APSの角度をθとします。

●質問者: akio0911
●カテゴリ:科学・統計資料
✍キーワード:APS 正方形
○ 状態 :終了
└ 回答数 : 1/1件

▽最新の回答へ

1 ● いのくに
●60ポイント

正方形PQRSの頂点Pが正方形ABCDの辺ABに接し、

正方形PQRSの頂点Sが正方形ABCDの辺ADに接しているとする。


正方形PQRSの一辺を1とすると、∠APS = θであるから、

AP = cosθ

AS = sinθ


三角形APS、三角形BQPは合同であるから、

BP = AS = sinθ

よって、

AB = AP+ BP

= AP + AS

= cosθ + sinθ


正方形ABCDと正方形PQRSの面積比は、

各正方形の辺の長さの2条比だから、

(cosθ + sinθ)^2 : 1

=(cosθ)^2 + 2sinθcosθ + (sinθ)^2 : 1

= 1 + 2sinθcosθ : 1

◎質問者からの返答

確認しました。

ありがとうございました。



●質問をもっと探す●



0.人力検索はてなトップ
8.このページを友達に紹介
9.このページの先頭へ
対応機種一覧
お問い合わせ
ヘルプ/お知らせ
ログイン
無料ユーザー登録
はてなトップ