人力検索はてな
モバイル版を表示しています。PC版はこちら
i-mobile

高校数学の数列の一般項の求め方は、階差数列一つを使えば、ほとんどの問題が解けるように思えるのですが、この考え方は間違っていますでしょうか?

「間違ってるよ」とのコメントのみですと困りますので(笑)、参考ULR,もしくはコメント付きでお願いいたします。

下記の問題の解説を見ていてそう思いました。
http://onohiro.hp.infoseek.co.jp/amanojack/m/kiso06c-1.htm

●質問者: clinejp
●カテゴリ:学習・教育
✍キーワード:ほと コメント 数学 (笑)
○ 状態 :終了
└ 回答数 : 4/4件

▽最新の回答へ

1 ● siigimaru
●60ポイント

http://www.kwansei.ac.jp/hs/z90010/sugakua/suuretu/iroiro3/iroir...

数列も色々タイプがあります。

時間をかければ可能ですが、テストでは時間はくれません。


2 ● ライ_タソ
●10ポイント

ずばり正しくありません。

数列の問題は主に

・等差数列

・階差数列

・等比数列

・郡数列

・その他(フィナボッチ数列とか)

・図形、グラフ、数列の極限から一般項を求める

等など色々あります。

で、何が言いたいかと言うと、色々な解法があるので、それぞれの解法パターンを身に着けましょうということです。

????


3 ● niroron
●10ポイント

(単純なおこたえになってしまって申し訳ありませんが)

実際ほとんどの問題が解けます.

理論的には.

ただし,それは

「このコンピュータは足し算しかできないけど,繰り返しと組み合わせの命令で掛け算もできます」

っていうのと同じで,私たちの,

「01しか表現できない二進数PCで10進数を示す」

ことのようなものです.

郡数列も階差数列も,掛け算のようなものです.

私たちは,掛け算の問題だったらカケて回答するとおもいます.

いちいち何度も足さないと思うのです.

http://homepage3.nifty.com/fum_s/math1-9/math1-9-1.html


4 ● syuuhenzin
●10ポイント

おそらく全てできます。

特性方程式を用いる解法が早い気もしますが、

熟練すれば同程度のスピードに出来るでしょう。


?a1=3/5、

1/an+1=2/an ? 1/2

?a1=a2=1、

an+2 ? an+1 ? 2an = 0

などは解けますか?



http://q.hatena.ne.jp/1148631928

関連質問


●質問をもっと探す●



0.人力検索はてなトップ
8.このページを友達に紹介
9.このページの先頭へ
対応機種一覧
お問い合わせ
ヘルプ/お知らせ
ログイン
無料ユーザー登録
はてなトップ