人力検索はてな
モバイル版を表示しています。PC版はこちら
i-mobile

前回に続いてまた似たような質問をさせていただきます。大学受験数学の「場合と数・確率」の分野の問題。重複組み合わせ問題「4桁の正の整数ABCDの個数 9≧A≧B≧C≧D≧0 を満たす場合についての個数を求めよ」を『○と|(仕切り線)』を使って解く場合、どのように考えたらよいでしょうか?例えば{1,1,1,1},{1,2,3,1},{3,5,3,6},{9,9,9,9}の場合○と仕切り線はどうなりますでしょうか?宜しく御願い致します。

●質問者: tengen
●カテゴリ:学習・教育 科学・統計資料
✍キーワード:いただきます 大学受験 数学 整数 確率
○ 状態 :終了
└ 回答数 : 2/2件

▽最新の回答へ

1 ● ももんがらす
●5ポイント

9|8|7|6|5|4|3|2|1|0

上の仕切りの中に○が4つ入ることになります。

○の数=4、仕切りの数=9

4つの○と9つの|の並べ方は13C4=715通り

ただし0の欄に○が4つ来る場合(0000)だけ「4桁の正の整数」にならないので、マイナス1

答.714個

http://izumi-math.jp/F_Nakamura/repeat/repeat.htm


2 ● rsc
●70ポイント ベストアンサー

4けたの正の整数だから、Aが0になる{0,0,0,0}の場合を後で、引くことにして、まず、{0,0,0,0}の場合も含めて考えます。

選び出す4個のものをすべて「○」で表し、10種類の区別を10-1=9個の仕切り「|」でつけることにします。1番目の仕切り「|」の左側の「○」は、「0」を表し、1番目と2番目の仕切り「|」の間の「○」は「1」、2番目と3番目の仕切り「|」の間の「○」は「2」、同様にしていって、・・・、そして、9番目の仕切り「|」の右側の「○」は「9」を表すことにすれば、例えば、次のように状態を表すことが出来ます。cf. 0|1|2|3|4|5|6|7|8|9

{1,1,1,1}→|○○○○||||||||

{1,2,3,1}→|○○|○|○|||||| ←{1,1,2,3}と同じ∵{ }の中は順番は自由。

{3,5,3,6}→|||○○||○|○||| ←{3,3,5,6}と同じ

{9,9,9,9}→|||||||||○○○○

求める場合の数は、4個の「○」と9個の仕切り「|」の並び方の数から1引いた数に等しい。

よって、(10+4-1)個の場所から「○」が並ぶ4個の場所を選ぶ組合せの数は、(10+4-1)C4=13C4=(13・12・11・10)/(4・3・2・1)=715

最後に、1を引いて、求める場合の数は、715-1=714

http://izumi-math.jp/F_Nakamura/repeat/repeat.htm

◎質問者からの返答

非常によくわかりました。前回に続いてありがとうございます。

関連質問


●質問をもっと探す●



0.人力検索はてなトップ
8.このページを友達に紹介
9.このページの先頭へ
対応機種一覧
お問い合わせ
ヘルプ/お知らせ
ログイン
無料ユーザー登録
はてなトップ