人力検索はてな
モバイル版を表示しています。PC版はこちら
i-mobile

半径が2cmの円に
⌒AB:⌒BC:⌒AC=3:4:5
となるように3点A,B,Cをとります。
?ABCが直角三角形のとき?ABCの面積を求めなさい。
という問題を作ったのですが、これは問題として成り立つのでしょうか?分かる人がいたら教えてください。

●質問者: メガネ
●カテゴリ:学習・教育
○ 状態 :終了
└ 回答数 : 5/5件

▽最新の回答へ

1 ● kanan5100
●0ポイント

半径が2cmの円に
⌒AB:⌒BC:⌒AC=3:4:5
となるように3点A,B,Cをとります。

の時点で、すでに三角形ABCはひとつに決まってしまいます。
∠A=60°、∠B=75°、∠C=45°になり、直角三角形にはなりません。


2 ● oil999
●0ポイント

成り立ちません。?ABCが直角三角形にならないためです。

円の中心をOとします。
すると、
⌒AB:⌒BC:⌒AC=∠AOB:∠BOC:∠AOC
ですから、
∠AOB:∠BOC:∠AOC=3:4:5
となり、実際の角度は
∠AOB=90°
∠BOC=120°
∠AOC=150°
となります。

ここで、?AOB、?BOC、?AOCはすべて、円の半径を二辺とする二等辺三角形ですから
∠OBA=∠OAB=(180°?∠AOB)÷2=(180?90)÷2=45°
同様に
∠OBC=∠OCB=(180°?∠BOC)÷2=(180?120)÷2=30°
となるので、
?ABCの角のひとつ
∠B=∠ABC=∠OBA+∠OBC=45+30=75°
と計算できます。
同様に∠A,∠Cについても計算すると、
∠A=60°
∠C=45°
となります。

このように?ABCが直角三角形にならないため、ご質問の問題は成り立ちません。


3 ● a-kuma3
●0ポイント

f:id:a-kuma3:20120308171110j:image
円周に三点を取る三角形が、直角三角形ということは、三辺のうちのひとつが直径になるので、
一番長い弧が、残りの二つの弧の合計と等しくなります。


ちぇ、回答被りまくり(なのは仕方ないとして)の三番手じゃん orz
似たような答えだけだと、芸がないので、ちょっと追記をば。

↓みたいな感じだったら、問題になるか、と。

円周上に3点A,B,Cをとります。
円の半径が 2cm のとき、三角形が直角三角形で、面積が 3㎠ の場合、
頂点を端とする三つの弧の比率を求めよ。


心は萌えさんのコメント
円弧は短い方でなければならないとは指定されていないと思います。

4 ● シンジ
●0ポイント

⌒AB:⌒BC:⌒AC=3:4:5
となるように3点A,B,Cをとります。

の部分で三点の場所を決めてしまっている為、三角形は一つに決まってしまいます。その為、そのあとに条件を追加することはもう出来ません。


5 ● 心は萌え
●100ポイント ベストアンサー

f:id:kokorohamoe:20120308175806p:image

外れているかもしれませんが ⌒BC が 短い方の円弧でなく、BCが作る円弧ならば何でも良いのであれば BCが作る円弧 は 2つありますので、長い方をBCが作る円弧とすれば解はあります。

問題を読み替えると ABが3 BC が 2 ACが1となるような点を作れば ⌒BACは 4となるので 定義を満たすと思います。

この場合の三角形は 実質 1:2:3となるので 30度60度90度の直角三角形 となります。引っ掛けでしょうか?

この時の 底辺 1 は 2xCOS 60 = x 高さは √3x ですから底辺かける高さ割る2で
2xCOS60x√3x/2 で (√3)xCOS60 =(√3)/2

ということでよいでしょうか? 誰か他の方が作られたのでしょうか?
ひっかけであれば、上記の解があるので成立で。

そうでないなら解なしで良いと思います。


a-kuma3さんのコメント
おー。 ⌒BC と ⌒AC を鈍角の方の弧で考えるのね。

心は萌えさんのコメント
a-kuma3らしくない解答でしたのでおもわず、回答しちゃいましたw

a-kuma3さんのコメント
いや、ある意味、すごくぼくらしい回答で X-( コメントをつけてもらってから、ひとつだけを裏返すのは成立しないから、二つと三つで組合せは、エート... (´・ω・`) みたいな感じになってました。

心は萌えさんのコメント
(・ω<) テヘペロ いや、頭の中では無理だったので 紙とペンで組み合わせを作図しました orz

メガネさんのコメント
正解なのですが、学校の数学の先生が⌒ABCとかで書かないとだめとか言われました。 この問題は成り立ちますか?

心は萌えさんのコメント
http://ja.wikipedia.org/wiki/%E5%86%86_(%E6%95%B0%E5%AD%A6) と http://oshiete.goo.ne.jp/qa/3751659.html をどうぞ。 短い方の弧も長い方の弧も数学上の意味合いの違いはありません。どちらも弧としては等価であり、区別したい場合は優弧か劣弧とよぶなり、円周上に別な点を置いてそれをつかって⌒BACとします。 ただし、一般常識上は 短い方の弧を弧とよぶ暗黙の了解の上では難しい所があります。とくに学校の先生は 教えたこと以外を?とする人が多いので難しいです。 問題とは採点する人間に絶対の権利があり、採点する人間がダメというのならばダメでしょう。採点する人間が良いといえばこの問題は成り立ちます。 これは宗教や 政治屋 法律が 国や地域によって 異なるのと 同じです。 大人の世界では何事も 議論と多数決で決めるので、 今あなたが属しているグループでは 便宜上 成り立たない としておいたほうが 良いでしょう。 ただ、ひとこと、引っ掛け問題ですとんちです。とかけば、成り立つと思う人も多いでしょう。 おとなの社会では抗議して認められる場合と、られない場合があります。 すべて駆け引きです。 結論から言えば、成り立つと思いますが、学校の先生相手にダメと言われたらそれ以上その人に言うのは辞めておいたほうがおyいでしょう。 はてななどは知恵比べなので 有りだと思いますよ。 時と場所という相手を選ぶ という事です。 それでは、楽しい はてな ライフを送って下さい。

メガネさんのコメント
ありがとうございました。
関連質問

●質問をもっと探す●



0.人力検索はてなトップ
8.このページを友達に紹介
9.このページの先頭へ
対応機種一覧
お問い合わせ
ヘルプ/お知らせ
ログイン
無料ユーザー登録
はてなトップ