人力検索はてな
モバイル版を表示しています。PC版はこちら
i-mobile

平均値の積(乗算)について、腑に落ちません。
週あたりの平均勤務日数×1日あたりの平均労働時間=週あたりの平均労働時間、とならないことについて、詳しくなれる書籍やサイト、検索ワードなどが知りたいです。

平均値の積(乗算)について、具体例をあげます。

・週の勤務日数:平均は3日/週・・・?
Aさん1日、Bさん3日、Cさん5日

・1日の労働時間:平均は7時間/日・・・?
Aさん12時間、Bさん6時間、Cさん3時間



・週の労働時間:平均は15時間/週・・・?
Aさん12時間(1*12)、Bさん18時間(3*6)、Cさん15時間(5*3)


なぜ平均値の積?×?(3*7=21)と?((1*12+3*6+5*3)/3=15)が一致しないのでしょうか?
計算式の上で間違いであることはわかるのですが、
#(1+3+5)/3×(12+6+3)/3 ≠ (1*12+3*6+5*3)/3
A、b、cの平均人Xさんは週に3日、1日7時間働いた結果、週に15時間働いているってことになるというのが腑に落ちずにいます。

分散?偏差?が違うから母数(平均)を乗算したらダメなのかなぁ、となんとなくあたりをつけていますが、このことについて、どんなキーワードやサイト、書籍などで調べたらすっきり納得できるようになるかを教えて頂きたいです。

●質問者: 匿名質問者
●カテゴリ:ビジネス・経営 学習・教育
○ 状態 :終了
└ 回答数 : 5/5件

▽最新の回答へ

1 ● 匿名回答1号
ベストアンサー

各自の「週の平均勤務時間」を提出させてその「平均」をとらないといけません。
平均日数×平均勤務時間はやってはいけない計算、意味のない計算です。

頭数(あたまかず、人数)で部分をそれぞれ割ってしまっている時点で全体にかかるはずの重み(偏り)がとりもどせないからです。

最後の平均は正しくは「重み付算術平均」「加重算術平均」にあたるようですが、日本語のウィキペディアに項目がなく、
http://en.wikipedia.org/wiki/Weighted_arithmetic_mean に同じように「午前のクラス20名の平均点と午後のクラス30名の平均点をそのまま足して2で割って全体の平均点としてはいけない、50人全員の点を足して50で割るならよい」という話がでています。

※まちがって2回おなじことをかきました。二回目は無視してください。


2 ● 匿名回答1号

各自の「週の平均勤務時間」を提出させてその「平均」をとらないといけません。
平均日数×平均勤務時間はやってはいけない計算、意味のない計算です。
頭数(あたまかず、人数)で部分をそれぞれ割ってしまっている時点で全体にかかるはずの重み(偏り)がとりもどせないからです。

最後の平均は正しくは「重み付算術平均」「加重算術平均」にあたるようですが、日本語のウィキペディアに項目がなく、
http://en.wikipedia.org/wiki/Weighted_arithmetic_mean に同じように「午前のクラス20名の平均点と午後のクラス30名の平均点をそのまま足して割る平均して平均点としてはいけない、全員の点を足して50で割るならよい」という話がでています。

※まちがって2回おなじことをかきました。二回目は無視してください。


質問者から

平均値??を使って、平均値?を導くような方法はあるのでしょうか?

○回答者1号さん
「頭数(あたまかず、人数)で部分をそれぞれ割ってしまっている時点で全体にかかるはずの重み(偏り)がとりもどせない?」
○回答者2号さん(コメント)
「?同じ1日でも中身が違うわけです。平均日数を出すということは、この違いの情報を敢えて捨てるということ?」
とのことで、とりもどせない/捨ててしまっている情報があるから、計算は不可能だと認識したのですが、

・偏りを表す代表値(分散など)を使えば可能になる?
・特殊な条件下であれば可能になる?(勤務日数も労働時間も正規分布に従うとき、のような条件下)

特殊な条件下でも計算が可能な場合、このような「代表値同士の計算」について、解説している書籍・サイトなどがあれば知りたいです。


3 ● 匿名回答1号

総労働時間を時間(hour)で比較すべき(たとえば労働単価は時給で算出する)場合に、「日数」という余計なパラメータを介在させた時点ですべてがマスクされて見えなくなります。「何日働いたかは関係ない。はたらいた時間だけ正確に給料をください。え、記録をつけてないんですか?労働基準法違反!」と従業員にいわれてしまいますね。
平均ですべてがすめば積分は要らないですし高価なパソコンと表計算ソフトもデータベース構築もいらないですw
分散も、右上がりグラフか右下がりグラフかは表現できません。
人間の行動は正規分布に全く従いません。(検定をするまでもなくすぐわかる)
もちろんサイコロをふって労働時間とその場合の労働単価を秒数まで完全にランダムに決めているのであれば正規分布に完全に従うとでも仮定しなければいけなくなりますが、それくらいなら最初から情報を保存しておくほうがマシです。
ピントがボケた写真をあとからくっきりさせてハエが1匹映っていたことを見いだすのもスタンド…超能力のない常人には無理です。
情報が失われるとはそういうことです。

余談ですが
http://www.asahi.com/articles/ASH2K4FXSH2KULFA00T.html
こちらの記事で個人情報法改正について報じられていますが、企業が匿名加工情報(平均値など)を出してよいのは、加工した時点でもとの情報が正確にはわからなくなるからですよ。分散くらいまでならともかく、グラフなどを出すと「わかる」ので文句がきますね。


4 ● 匿名回答4号

むしろ、2変数の「積の平均?平均の積」を使うことを考えてみましょう。

2変数の「積の平均?平均の積」を各々の標準偏差の積で割ったものが(ピアソンの積率)相関係数になり、これが2変数の直線的な関係の指標となります。

きちんと学びたければ、相関について学びましょう。


匿名回答4号さんのコメント
念のため、|相関係数|≦1ですから、積の平均の代わりに平均の積を使った場合の誤差は各々の標準偏差の積の範囲に収まります。ですから、各々がばらついていなければ良い近似と言えますが、ばらついていると相関が大きいと悪い近似になります。

1-5件表示/7件
4.前の5件|次5件6.
関連質問

●質問をもっと探す●



0.人力検索はてなトップ
8.このページを友達に紹介
9.このページの先頭へ
対応機種一覧
お問い合わせ
ヘルプ/お知らせ
ログイン
無料ユーザー登録
はてなトップ