手持ちが0円になったらそれ以上はできません。また110万円になった瞬間、勝ち逃げで終了するとします。
また場代などは存在せず、勝てば確実に掛け金が2倍になるとします。
「とにかく○円ずつかけ続ければいい」「○円になるまでは△円ずつ賭ける」…といった、確率論に基づいた最高の戦略をお教え頂ければ幸いです。
http://www.hatena.ne.jp/1138184897#
人力検索はてな - 100万円が手元にあります。これを丁半博打(orルーレットの赤黒)で110万円にしたいと思います。この場合、最高の戦略は何でしょうか。 手持ちが0円になったらそれ以上は..
普通に
1回目は10万円
負けたら 2回目は20万円
負けたら 3回目は40万円
負けたら 4回目は25万円
勝った 5回目は80万円
勝てたらこれで終了
4回目負けたら残り5万円なので
5回目5万円賭けてまたはじめる。
ここまでで賭けなければ厳しいですね。
丁半博打は、確率50:50ですが、ルーレットの赤黒は、「0」「00」があるために、47%程度の確率になってしまいます。そこに注意が必要です。
最高の戦略は、「やらない事」なんですが。
で、確率50:50の博打をやるとして、なるべく少額の金額から賭け始め、勝てばその金額のまま、負けたらその金額の倍額を、次の勝負に賭けます。その勝負で勝てば、先程の負け分を取り返せます。
いわゆる「倍がけ法」といわれています。
100円を賭けて当たれば、再び100円を賭ける。外れれば200円を次に賭ける。それでも外れれば400円を賭ける。以下100万円に達するまでに当たれば、それまでの損を取り返すことが出来ます。
なるほど。
そうですね。0と00は今回考慮に入れず、で。はい。
最高の戦略はやらないこと。確かにそうです。ただまぁ、思考ゲームとして。はい。
戦略はやはり倍々…でしょうか。
ただ100円で間に合いますでしょうか。ちょっと、さすがにそれは。
オンラインカジノ必勝法
http://onlinecasino-ougi.com/kouryakuhou-sonota.html
マーチンゲール、ココモ法、10%法、逆マーチンゲール
マーチンゲール法が有効ですね。。。
なるほど。やはりそこに行き着くんでしょうか。ふむー。
http://www.hatena.ne.jp/だみぃ:detail]
0,5の確率において、1,1倍にするのですか。
最初に10万円。
次は20万円。
次は40万円。
この時点で、7/8の確率で110万。
1/8の確率で残ったお金は40万円です。
次は半掛け。
勝ったら60万円。こうなったら次は50万円。
負けたら20万円。勝ったら2つ前に戻る。
これにも負けたら10万円。
次は5万円。
その次も負けたら5万円。
これが一番いいかと。
な、なるほど。そのあとが「半分ずつ」でしょうか。いずれにしても、2分の1で、1回でも勝てばOKというのをひたすら繰り返すんですね。ふむー。ありがとうございました。
勝ち負けの確立が50%であるならば(資金が無限ならば)確実に勝つ方法はあります。
負けたら賭けた金額を倍にしていくと言う方法です。
つまり、最初に1万円(負け) ⇒ 2万円(負け) ⇒ 4万円(負け) …と言う感じです。
こうして次に8万円を賭け、勝つと最初に賭けた分の1万円分の収支がプラスになります。
今回は元手が100万円なので、
最初から大きい金額にしてしまうと回収出来なくなる可能性があります。
そうすると、最初は1000円程度から賭け始めると良いでしょう。
1000円、2000円、4000円…128000円、256000円、512000円と10回まで賭けられます。
勝率50%で10回連続で負ける確立は0.5^10の0.1%程度なので、ほぼ確実に勝てます。
1回勝って1000円収支がプラスになったら、再度掛け金を1000円に戻します。
これを収支プラス10万円になるまで何度も続けます。
ななな、なるほどう。今までで一番現実的な気がしてきました。なるほど、なるほど。確かに。
しかし1000円を10万のプラスになるまでやるには、100回…でしょうか…。
そして10回賭けて、全部負ける確率は、約1000分の1…ですよね。確かにそう考えると、現実的な気もしてきました。ただこの作業を100回やるとなると…。
間を取って、1万円くらいが一番いいのでしょうか…。それを10回?
でも1万円だと、1 2 4 8 16 32 の時点で63万でギリギリ。
64分の1でこうなってしまうんですよね。
これを10回、かぁ…。
63/64の10乗を計算すると、85%でした。
………ってそれって、7/8と、たいして変わらない?
すなわち、刻んでも刻まなくても、確率は同じ…ということでしょうか?
うーん。考えが混乱してきました。
この「倍々にかけていく方法」の場合、賭ける金額はどのくらいがベストなんでしょう…。実はいくらでも変わらない…とか?
詳しい方、お教え頂ければ幸いです。
http://www5.ocn.ne.jp/~cinfo/game.html
���܂��V�ѕ��@�`���������炻���`
回答になってない回答ですが、要はルーレットの胴元になれば良いのです。
ヨーロッパ式なら2.7%、アメリカ式なら5.26%の取り分(ハウスエッジ)があります。
http://www.onlinecasino-fan.com/strategy/basic
オンラインカジノ必勝法・攻略法 - ルーレット スロットなどのオンラインカジノゲーム攻略法・必勝法・裏技公開
ありがとうございます。胴元になれば良い。コペルニクス的転回です。
しかしそれって、「どうやって受験受かればいいでしょうか?」にたいして、「要は大学側になればいいのです」みたいな回答ではないでしょうか。コペルニクス的転回ではあるんですけど、現実的な解決にはなっていない、という。
ありがとうございました。
↑ダミーです。
>この「倍々にかけていく方法」の場合、賭ける金額はどのくらいがベストなんでしょう…。
>実はいくらでも変わらない…とか?詳しい方、お教え頂ければ幸いです。
賭ける金額を多くする⇒リスクが掛かるが、手間と時間は掛からない。
賭ける金額を少なくする⇒リスクは少なくなるが、手間と時間が掛かる。
上のことをふまえて考えると、1万円がいいかと思います。
なるほどなるほど。
実際に、確かに1万円くらいがいいのかもしれませんね。
いずれにしても、「倍々」こそがベスト…なんでしょうか。
もし他の考えもありましたら。はい。
Example Web Page
URLはダミーです。
正確に計算したわけではありませんが、
ある回に賭けて買った結果、110万円より多くなるように賭けるのは無駄なリスクを犯すことになります。
また何回に分散しても+N円になる確率と-N円になる確率は同じだとおもいます。
よって、その回で勝った結果、110万円より多くなるように賭けないかぎり、いくら賭けても一緒なのではないでしょうか。
な、なるほど。何回に分散しても同じ。ふむー。
そういうもの…なんですね。ありがとうございます。
>この「倍々にかけていく方法」の場合、賭ける金額はどのくらいがベストなんでしょう…。
10万円だと思います。
10万円の場合。
3回連続で負ける確率は1/8、12.5%です。
1万円の場合。
6回連続で負ける確率は1/64、1.56%ですが、一度の勝ちで得られるのは1万円なので、10回勝つ必要があり、しかも、一度でも6連敗すれば負け。
結局、負ける確率は10/64、15.6%です。
ありがとうございます。
ただ、ちょっと…。
10/64ではなく、63/64の10乗じゃないでしょうか。
1/64が、10回連続で起こらない確率、みたいな。
うむむむ。なんかすごく混乱してきました。
倍々で賭けていく方法は一緒ですが、ディーラーの癖というか傾向を見てから勝負に入ったほうがいいじゃないでしょうか?
例えばそのディーラーは同じ色を連続して出すのはせいぜい4回までと傾向がつかめていれば、赤が4回続いたら黒に10万円賭けます。
数学的な確率で言えば次も赤の確率は50%ですが、このディーラーの傾向として同じ色が続く確率はかなり低いわけですから、心理的な確率から言えば90%位はあるでしょう。
で、また赤が出たらそこからはひたすら黒に倍々で賭けていきます。
見かけの確率よりは良い確率で、目標達成できると思います。
な、なるー。
ディーラーのクセをよみぬく、と。
ルーレットだったら、確かに可能…といえば可能かも、ですね。ありがとうございました。
こんなところでしょうか…。
いや、色々と面白かったです。本当にありがとうございました。
なるほど。倍々、というやつですね。3回で7/8で勝てる、と…。
しかし1/8で微妙ですね。ふむふむ。
勝った 5回目は80万円
というのが少し分からなかったのですが…。
ありがとうございました。