匿名質問者
匿名質問者匿名質問者とは「匿名質問」を利用して質問した質問者。
「匿名質問」では、ユーザー名を公開せずに匿名の質問ができます。
詳しくはこちら

機械学習の基本的な識別器であるパーセプトロンについて質問があります。

パーセプトロンの限界として、よく特徴空間が線形分離可能な場合にしか使えないということが言われています。
しかし基底関数(http://aidiary.hatenablog.com/entry/20100429/1272504218←この方のページの関数Φにあたるもの)として非線形な写像を入れれば特徴空間が線形分離不可能な場合にも適用できるのだと理解していました。
またPRML5章にも「パーセプトロンの代わりにニューラルネットワークやサポートベクターマシンを使うことの利点は高次元データの識別ができることだ」という旨のことが書いてあったと思います。(うろ覚えですが)
私の「パーセプトロンは基底関数を使えば非線形な特徴空間にも使える。NNやSVMを使うのは高次元データを識別するため」という理解は間違っているでしょうか?

回答の条件
  • 1人50回まで
  • 13歳以上
  • 登録:2013/01/31 21:59:29
  • 終了:2013/02/07 22:00:04

回答(0件)

回答はまだありません

コメントはまだありません

この質問への反応(ブックマークコメント)

「あの人に答えてほしい」「この質問はあの人が答えられそう」というときに、回答リクエストを送ってみてましょう。

これ以上回答リクエストを送信することはできません。制限について

絞り込み :
はてなココの「ともだち」を表示します。
回答リクエストを送信したユーザーはいません